数据分析师提升方案(数据分析师升职方向)

数据分析师提升方案(数据分析师升职方向)

数据分析师的岗位划分可以大致分为四个级别,分别是助理级、初级、中级和高级。一名初级的数据分析师,只需要掌握常规的分析方法、熟悉提取数据的套路。如果想进一步提升,则需要一定的经验积累,需要具备领导跨部门完成项目的能力。想成为中高级别的数据分析师,则需要更高阶的技术能力和更丰富的经验积累,在公司具有一定的影响力。

钻研专业知识和技能

初级数据分析师想要提升自己,最基本的就是学习新技术,除了能够熟练使用Excel和PPT中常用的开发功能外,还需要掌握一门数据库语言,比如SQL、Python等。

当然,由于互联网行业发展速度较快,数据分析师又属于新兴职位,这一职位的技术迭代速度同样快,此时若想要将数据分析师作为长远发展的职业,还需要具备较强的学习能力,紧跟技术领域的发展趋势,注重学习当下主流的算法技术。这样才能做到与时俱进,不会在工作几年后就被新的同事比下去。同时,由于数据分析知识的更迭速度比较快,还可以在专业领域与相关人士共同探讨学习,与其他人形成技术壁垒。

重视项目经验积累

数据分析师虽然有较强的理论知识要求,但同时他也是技术岗位,实践和理论同样重要。因此,初级数据分析师想要提升自身价值,除了要通过用各种常用的提取数据方法及分析方法来完成工作之外,更重要的是记录在做项目时用哪些方法出了问题,以及这些问题最后是如何解决的。尤其是参与大型复杂项目时,机会难得,更应在项目完成后书写工作总结,不是为了给领导看,而是为了给自己积累经验。

根据行业诉求,针对性提升

任何一个岗位将来能不能有好的发展,除了关注岗位本身的工作内容,关注公司的运营情况,还应关注行业动态,了解行业诉求,从而更好地提升自我,得以重用。

在数字化转型大潮中,许多传统企业也慢慢意识到了数据分析师的重要性,因此,数据分析师在电商、金融等很多领域都被需要,但不同领域的数据分析技术侧重点是不同的,比如电商平台促销分析,核心技术是数据清洗、ABC分类法等;贷款风控分析,核心是用户行为路径分析、单变量分析、群组分析等,因此,要根据所在行业要求,有针对性地学习核心技术,进行精细化培养、提升。

数据分析师提升方案(数据分析师升职方向)

总之,数据分析师这种新兴岗位的从业者想要提升自身价值,专业技能的学习和工作经验的积累应该贯穿始终,同时辅以行业要求进行专门提升。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 787013311@qq.com 举报,一经查实,本站将立刻删除。
(0)
上一篇 2022-04-04 04:30:02
下一篇 2022-04-04 05:00:02

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注