各位同学大家好,中考的脚步越来越近,大家准备好了吗?二次函数作为中考试题中不可忽视的一部分,其重要程度相信大家均有领悟。今天让我们继续探究一下二次函数的其中一个重要知识点,什么是二次函数顶点式。
我们开始以前,请大家可以快速地浏览一下二次函数经典五大函数图像模板(一) 二次函数经典五大函数图像知识点模板(二) 的相关知识点。
根据二次函数五大经典的函数图像模型的理解,我们一步步地探究二次函数顶点式。
表达式为y=a(x-h)²(a≠0,a、h为常数),顶点坐标:(h,0),y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标:(h,k)。
从上述图例可知,对称轴为直线x=h,顶点的位置和图像的开口方向与最简二次函数y=ax²的图像相同,y=a(x-h)²,当x=h时,y有最大或最小值0,y=a(x-h)²+k,当x=h时,y有最大或最小值k。
二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,不能因h前是负号就简单地认为是向左平移,因公式y=a(x-h)²+k本身就带着“-”号。同理,y=a(x-h)²平移成y=a(x-h)²+k时,k>0,k值越大图像顶点距x轴且为正方向越远,k<0,k值越大图像顶点距x轴且为负方向越远。这里我们有一个口诀可以进行记忆,“左加右减,上加下减”。
下面我们再来探讨一下关于顶点式的顶点坐标的由来。
我们对顶点式来进行一下变形。
我们把顶点式转化成一般式时,不难发现h=-b/2a,k=(4ac-b²)/4a。这正是二次函数一般式的顶点坐标公式,大家了解了吗?
课堂笔记:
①当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动|h|个单位得到;
②当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;
③当h>0,k>0时,将抛物线y=ax²向右平行移动|h|个单位,再向上移动|k|个单位,就可以得到y=a(x-h)²+k的图象;
④当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;
⑤当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动|k|个单位可得到y=a(x-h)²+k的图象;
⑥当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
练一练:
请大家核对一下答案: